

Autonomous Systems Lab

Robots for Space -Needs and Visions

Roland Siegwart Autonomous Systems Lab Institute of Robotics and Intelligent Systems **ETH Zurich**

- **Robots in Space**
- Exploration Robot Examples

Human and Robots in Space

Today Space Shuttle

Competitors or Dependable partners

Spirit et Opportunity on the surface of the Red Planet

Where no human can go vet

Robots on Mars - since 24.1.2004

Opportunity's view of a stack of fine layers exposed on a ledge in "Erebus Crater" shows a diverse range of primary and secondary sedimentary textures formed billions of years ago. These structures likely result from an interplay between windblown and waterinvolved processes.

Human and Robots in Space

Living on MARS 2030

Competitors or Dependable partners

Robots are absolutely needed in Space

To go where no human can go yet

 E.g. Mars expiration rovers

 To assist humans where they can go

 International Space Station Habitats on Mars

Autonomous Systems Lab

Robot Assistants STS-103 December 1999

Courtesy of Claude Nicollier ESA/NASA

Robotic Mars Explorers

EXOMARS digging...

Source: Capability Roadmap, NASA 2005

"Search for Past Life" Pathway Example

EXPloration Rovers for Mars - Going Beyond the Limits

© Roland Siegwart

The Way Forward

- Optimized suspension mechanisms
- Adapted wheels
- Advanced autonomous navigation capabilities

13/34

Machine Intelligence Starts with the Design Mechanical Intelligent

Locomotion Concepts adapted for rough terrain

The Shrimp

Autonomous Systems Lab

Rover Description - MER

Mars Exploration Rover (MER)

MER by NASA; successful mission on Mars
 Original rocker bogie type structure

RCL and VNIITRANSMASH: ESROL-A

Simple structure, 3 parallel bogies, no compliance between body and back wheel

© Roland Siegwart

CRAB

 Parallel bogies
 Articulated rocker
 Symmetrical structure (longitudinal)

Autonomous Systems Lab

⋖●

18/34

180

Simulation: Results

© Roland Siegwart

Research for the Future - Contraves

Space Rovers Experimental results

EPFL-Crab

RCL-C

19/34

ETH Zürich

Motion Planning

Onboard the rover: for navigation

 Motion estimation and control
 Planning based on 3D maps perceived by the stereo imager

 On earth: for science and rover operation planning

© Roland Siegwart

ETH Zürich

Autonomous Systems Lab

23/3

Flexible Wheels

Better tractive performanceLower total motion resistance

	Total sinkage [mm]	Wheel deflection [mm]	Max. soil slope [°]	Required wheel output torque [Nm]	Combined output power (6 wheels) [W]	Required input power [W]
Rigid wheel D=35 cm, b=15 cm, grouser height=3.4 cm, i=10 %	45.8	-	13.9	13.87	10.6	25.2
<i>Flexible wheel</i> D=35 cm, b=15 cm, grouser height=0.1 cm, pressure on rigid ground=5 kPa, i=10 %	12.9	12.8	13.9	6.17	4.7	11.2 Roland Siegwart

Robot Agents

- Microbot Team System for Extraterrestrial Cave Exploration
 - Hopping / rolling
 10 cm diameter, 100 g

© Roland Siegwart

LamAlice II:

Pico-Rover for Planetary Exploration

- Size: 11 x 6 x 4 cm
- Weight: 40 g
- Sensors: CMOS Camera (256x256), IR
- Motors: Watch (Lavet)
- Micro-Controller: Atmel ATmega103L
- Power: 50 mW
- Autonomy: 50 h

Autonomous Systems Lab

25/34

Flying on Mars - Sky-Sailor

Develop & realize an autonomous, solar powered micro-glider > Power autonomy for staying in air for days Navigational autonomy > Fly on Earth in Martian condition (high altitude) Atmospheric Density ➤ ~1/80 compared with earth Gravity \rightarrow ~1/3 compared with earth Solar Energy ~1/2 compared with earth Targeted Payload ➢ 0.5 Kg > Lightweight sensors and scientific instruments > Atmosphere, magnetic field study

26/34

- I Zurich

© Roland Siegwart

Influence of battery technology on flight altitude on Earth

© Roland Siegwart

29/34

ETH Zürich

1st Prototype

- Motorized model airplane
- Wingspan 3.2 m
 - Empty weight 800 g
- Total weight 2.4 kg

DC motor, 60 cm propeller
 → optimized efficiency for level flight

30/34

Skysailor: Systems Integration

Autonomous Systems Lab

31/34

ETH Zürich

Solar Generator

216 RWE solar cells
 17% efficiency → ~90 W max
 encapsulated into 3 solar panels
 non reflective encapsulation

High efficiency Maximum Power Point Tracker
 97 % efficiency for 25 g and 90 W

© Roland Slegwart

Lithium Polymer Battery > 240 Wh, 1.2 kg

Tests

Autonomous flight
 > 5 hours flight completed

Continuous flight
Feasibility validated

Sky-Sailor

Autonomous Systems Lab

33/34

Mars 2030 Let's take the challenge