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Robots for Space –
Needs and Visions
Roland Siegwart
Autonomous Systems Lab

Institute of Robotics and Intelligent Systems

ETH Zurich

- Robots in Space
- Exploration Robot Examples
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Human and Robots in Space

Competitors or 
Dependable partners

Today
Space Shuttle
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Spirit et Opportunity on 
the surface of the Red Planet

Where no human can go yet
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Robots on Mars – since 24.1.2004

Opportunity's view of a stack of fine layers exposed on a 
ledge in "Erebus Crater" shows a diverse range of 

primary and secondary sedimentary textures formed 
billions of years ago. These structures likely result 
from an interplay between windblown and water-

involved processes. 
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Human and Robots in Space

Competitors or 
Dependable partners

Living on MARS 2030
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Robots are absolutely needed in Space
To go where no human can go yet

E.g. Mars expiration rovers

To assist humans where they can go
International Space Station
Habitats on Mars
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Robot Assistants
STS-103                                   

December 1999

Courtesy of Claude Nicollier ESA/NASA
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EXOMARS digging…

Robotic Mars Explorers
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“Search for Past Life” Pathway Example

Mars Testbed #1Mars Testbed #1 Mars Testbed #2Mars Testbed #2 Mars Testbed #3Mars Testbed #3

Source: Capability Roadmap, NASA 2005
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Exploration Rovers for Mars
- Going Beyond the Limits
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The Way Forward
Optimized suspension mechanisms

Adapted wheels

Advanced autonomous navigation capabilities
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Machine Intelligence Starts with the Design

Mechanical Intelligent
Locomotion Concepts adapted for rough terrain

The Shrimp
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Rover Description – MER 
Mars Exploration Rover (MER)

MER by NASA; successful mission on Mars
Original rocker bogie type structure

 
front 
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Rover Description – RCL-E
Concept E (RCL-E)

RCL and VNIITRANSMASH: ESROL-A
Simple structure, 3 parallel bogies, no compliance 
between body and back wheel

front 
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Rover Description – CRAB 
CRAB

Parallel bogies
Articulated rocker
Symmetrical structure
(longitudinal)
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8.96.77.36.0Max. T [Nm]
1.00.570.950.64Max. G [-]

MER
BWD

MER
FWD

RCL-ECRAB

Simulation: Results
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Space Rovers
Experimental results

RCL-C

EPFL-Crab
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Motion Planning
Onboard the rover: for navigation

Motion estimation and control
Planning based on 3D maps perceived by the stereo imager

On earth: for science and rover operation planning

DTM                                       Traversability map
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Navigation –
Motion Estimation and Control in Rough Terrain
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Flexible Wheel 
- Feeling the Environment

Better grip on loose ground
Measure the contact force and points
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Flexible Wheels
Better tractive performance 
Lower total motion resistance

11.24.76.1713.912.812.9Flexible wheel
D=35 cm, b=15 cm, 
grouser height=0.1 cm, 
pressure on rigid ground=5 
kPa, i=10 %

25.210.613.8713.9-45.8Rigid wheel
D=35 cm, b=15 cm, 
grouser height=3.4 cm, i=10 %

Required 
input 
power 
[W]

Combined 
output 

power (6 
wheels) 

[W]

Required 
wheel 
output 
torque 
[Nm]

Max. 
soil 

slope 
[°]

Wheel 
deflection 

[mm]

Total 
sinkage
[mm]
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Robot Agents
Microbot Team System for Extraterrestrial Cave 
Exploration

Hopping / rolling
10 cm diameter, 100 g

Courtesy of Steven Dubowsky, MIT
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LamAlice II: 
Pico-Rover for Planetary Exploration
Size: 11 x 6 x 4 cm
Weight: 40 g
Sensors: CMOS Camera 
(256x256), IR
Motors: Watch (Lavet)
Micro-Controller: 
Atmel ATmega103L
Power: 50 mW
Autonomy: 50 h
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Flying on Mars – Sky-Sailor
Develop & realize an 
autonomous, solar powered micro-glider

Power autonomy for staying in air for days
Navigational autonomy
Fly on Earth in Martian condition (high altitude)

Atmospheric Density 
~1/80 compared with earth

Gravity
~1/3 compared with earth

Solar Energy
~1/2 compared with earth

Targeted Payload
0.5 Kg
Lightweight sensors and scientific instruments
Atmosphere, magnetic field study

?
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Design Methodology
Based on Mass & Power Balance

Need of precise scaling laws (mass models)

Airplane Parts
• Solar cells
• Battery
• Airframe
• …
Total mass

Aerodynamic & Conditions
Power for level Flight
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Design Methodology
Results: for 0.5 Kg payload on Earth



29/34 © Roland Siegwart

Au
to

no
m

ou
s 

Sy
st

em
s 

La
b

Design Methodology
Influence of battery technology on flight altitude on Earth

3.2 m
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1st Prototype

Motorized model airplane

Wingspan 3.2 m

Empty weight  800 g

Total weight 2.4 kg

DC motor, 60 cm propeller 
optimized efficiency for level flight
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Li-Po Accu
6x8 cells 7200mAh, 28,8 

V

Distance range 
sensor
SRF08

Altimeter
MS5534

Airspeed sensor
(Pitot tube)

ASDX

GPS u-Blox
SAM-LS GPS

Camera
OV7648FB

Inertial Measure-
Ment Unit

IMU
Xsens MT9-B

Motor
Propeller

Servo motors
(ailerons,rudder,…)

Radio Modem (or GPRS)
Aerocomm AC4486

Solar Modules
Silicon cells

Skysailor: Systems Integration
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Solar Generator
216 RWE solar cells 

17% efficiency ~90 W max
encapsulated into 3 solar panels
non reflective encapsulation

High efficiency Maximum Power Point Tracker
97 % efficiency for 25 g and 90 W

Lithium Polymer Battery
240 Wh, 1.2 kg
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Tests
Autonomous flight

5 hours flight completed

Continuous flight
Feasibility validated
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Mars 2030
Let’s take the challenge


